Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Clin Oncol ; 40(16): 1732-1740, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34767469

RESUMO

PURPOSE: Accurate risk assessment is essential for the success of population screening programs in breast cancer. Models with high sensitivity and specificity would enable programs to target more elaborate screening efforts to high-risk populations, while minimizing overtreatment for the rest. Artificial intelligence (AI)-based risk models have demonstrated a significant advance over risk models used today in clinical practice. However, the responsible deployment of novel AI requires careful validation across diverse populations. To this end, we validate our AI-based model, Mirai, across globally diverse screening populations. METHODS: We collected screening mammograms and pathology-confirmed breast cancer outcomes from Massachusetts General Hospital, USA; Novant, USA; Emory, USA; Maccabi-Assuta, Israel; Karolinska, Sweden; Chang Gung Memorial Hospital, Taiwan; and Barretos, Brazil. We evaluated Uno's concordance index for Mirai in predicting risk of breast cancer at one to five years from the mammogram. RESULTS: A total of 128,793 mammograms from 62,185 patients were collected across the seven sites, of which 3,815 were followed by a cancer diagnosis within 5 years. Mirai obtained concordance indices of 0.75 (95% CI, 0.72 to 0.78), 0.75 (95% CI, 0.70 to 0.80), 0.77 (95% CI, 0.75 to 0.79), 0.77 (95% CI, 0.73 to 0.81), 0.81 (95% CI, 0.79 to 0.82), 0.79 (95% CI, 0.76 to 0.83), and 0.84 (95% CI, 0.81 to 0.88) at Massachusetts General Hospital, Novant, Emory, Maccabi-Assuta, Karolinska, Chang Gung Memorial Hospital, and Barretos, respectively. CONCLUSION: Mirai, a mammography-based risk model, maintained its accuracy across globally diverse test sets from seven hospitals across five countries. This is the broadest validation to date of an AI-based breast cancer model and suggests that the technology can offer broad and equitable improvements in care.


Assuntos
Neoplasias da Mama , Inteligência Artificial , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/epidemiologia , Detecção Precoce de Câncer , Feminino , Humanos , Mamografia , Programas de Rastreamento
2.
J Clin Med ; 10(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467539

RESUMO

BACKGROUND: Developing a decision support system based on advances in machine learning is one area for strategic innovation in healthcare. Predicting a patient's progression to septic shock is an active field of translational research. The goal of this study was to develop a working model of a clinical decision support system for predicting septic shock in an acute care setting for up to 6 h from the time of admission in an integrated healthcare setting. METHOD: Clinical data from Electronic Health Record (EHR), at encounter level, were used to build a predictive model for progression from sepsis to septic shock up to 6 h from the time of admission; that is, T = 1, 3, and 6 h from admission. Eight different machine learning algorithms (Random Forest, XGBoost, C5.0, Decision Trees, Boosted Logistic Regression, Support Vector Machine, Logistic Regression, Regularized Logistic, and Bayes Generalized Linear Model) were used for model development. Two adaptive sampling strategies were used to address the class imbalance. Data from two sources (clinical and billing codes) were used to define the case definition (septic shock) using the Centers for Medicare & Medicaid Services (CMS) Sepsis criteria. The model assessment was performed using Area under Receiving Operator Characteristics (AUROC), sensitivity, and specificity. Model predictions for each feature window (1, 3 and 6 h from admission) were consolidated. RESULTS: Retrospective data from April 2005 to September 2018 were extracted from the EHR, Insurance Claims, Billing, and Laboratory Systems to create a dataset for septic shock detection. The clinical criteria and billing information were used to label patients into two classes-septic shock patients and sepsis patients at three different time points from admission, creating two different case-control cohorts. Data from 45,425 unique in-patient visits were used to build 96 prediction models comparing clinical-based definition versus billing-based information as the gold standard. Of the 24 consolidated models (based on eight machine learning algorithms and three feature windows), four models reached an AUROC greater than 0.9. Overall, all the consolidated models reached an AUROC of at least 0.8820 or higher. Based on the AUROC of 0.9483, the best model was based on Random Forest, with a sensitivity of 83.9% and specificity of 88.1%. The sepsis detection window at 6 h outperformed the 1 and 3-h windows. The sepsis definition based on clinical variables had improved performance when compared to the sepsis definition based on only billing information. CONCLUSION: This study corroborated that machine learning models can be developed to predict septic shock using clinical and administrative data. However, the use of clinical information to define septic shock outperformed models developed based on only administrative data. Intelligent decision support tools can be developed and integrated into the EHR and improve clinical outcomes and facilitate the optimization of resources in real-time.

3.
J Am Coll Emerg Physicians Open ; 1(4): 383-391, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33000061

RESUMO

OBJECTIVE: We sought to evaluate the influence of several well-documented, readily available risk factors that may influence a psychiatric consultant's decision to admit an emergency department (ED) patient reporting suicidal ideation for psychiatric hospitalization. METHODS: We conducted a retrospective study of adult patients presenting to six affiliated EDs within Pennsylvania from January 2015 to June 2017. We identified 533 patients reporting current active suicidal ideation and receiving a complete psychiatric consultation. Socio-demographic characteristics, psychiatric presentation and history, and disposition were collected. Decision tree analysis was conducted with disposition as the outcome. RESULTS: Four of 27 variables emerged as most influential to decisionmaking, including psychiatric consultant determination of current suicide risk, patient age, current depressive disorder diagnosis, and patient history of physical violence. Likelihood of admission versus discharge ranged from 97% to 58%, depending on the variables considered. Post hoc analysis indicated that current suicide plan, access to means, lack of social support, and suicide attempt history were significantly associated with psychiatric consultant determination of moderate-to-high suicide risk, with small-to-medium effect sizes emerging. CONCLUSIONS: Only a handful of variables drive disposition decisions for ED patients reporting current active suicidal ideation, with both high and low fidelity decisions made. Patient suicide risk, determined by considering empirically supported risk factors for suicide attempt and death, contributes the greatest influence on a psychiatric consultant's decision to admit. In line with American College of Emergency Physicians (ACEP) recommendations, this study accentuates the importance of using clinical judgment and adjunct measures to determine patient disposition within this population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...